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ABSTRACT: Aberrant activation of receptor tyrosine ki-
nases (RTKs) is a common feature of many cancer cells.
It was previously suggested that the mechanisms of ki-
nase activation in cancer might be linked to transitions
between active and inactive states. Here, we estimate the
effects of single and double cancer mutations on the sta-
bility of active and inactive states of the kinase domains
from different RTKs. We show that singleton cancer mu-
tations destabilize active and inactive states; however, in-
active states are destabilized more than the active ones,
leading to kinase activation. We show that there exists a
relationship between the estimate of oncogenic potential
of cancer mutation and kinase activation. Namely, more
frequent mutations have a higher activating effect, which
might allow us to predict the activating effect of the muta-
tions from the mutation spectra. Independent evolutionary
analysis of mutation spectra complements this observation
and finds the same frequency threshold defining mutation
hotspots. We analyze double mutations and report a pos-
itive epistasis and additional advantage of doublets with
respect to cancer cell fitness. The activation mechanisms
of double mutations differ from those of single mutations
and double mutation spectrum is found to be dissimilar to
the mutation spectrum of singletons.
Hum Mutat 33:1566–1575, 2012. Published 2012 Wiley Period-
icals, Inc.∗
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Introduction
Receptor tyrosine kinases (RTKs) transduce signals from the ex-

tracellular matrix to the cytoplasm of a cell; they contain extracellu-
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lar, transmembrane, and catalytic kinase domains and may include
regulatory domains. RTK phosphorylation may lead to Ras acti-
vation and initiate the cascade of events, which lead to regulation
of gene expression implicated in cell division, cellular homeostasis,
and survival. It has been shown that kinases, especially RTKs, are
frequently mutated in cancer; a large fraction of all alterations in
cancer represent point mutations [Wood et al., 2007] and only a
small fraction of mutations are inherited. Although somatic muta-
tions contribute significantly to tumorigenesis, the large majority
of them are considered to be neutral (so-called “passenger” muta-
tions) and only a few of them are under positive selection in cancer
cells (so-called “driver” mutations) [Greenman et al., 2007; Wood
et al., 2007]. Certain cancer mutation hotspots have been detected
in several RTKs, most of them located in the activation loop, P-loop,
and Asp-Phe-Gly DFG loops. Moreover, driver mutations are more
likely found to be associated with the functionally important re-
gions in kinases than passenger mutations [Izarzugaza et al., 2009].
Although mutations in multiple genes have been observed in many
cancers, interestingly, it was shown that properties of cancer mu-
tations are more similar to Mendelian disease mutations than to
complex disease mutations, pointing to the scenario when cancer
progresses through a series of stepwise mutations each of which
might provide some advantage to the tumor cells [Kaminker et al.,
2007; Vogelstein and Kinzler, 1993]. Furthermore, according to the
concept of “oncogene addiction,” cancer cells depend on the activity
of a single or a few oncogenes for their proliferation and survival
[Weinstein and Joe, 2008]. Finding oncogenes is not a trivial task
and one approach includes finding significant driver mutations.
Various statistical methods have been applied in the attempt to find
positively selected mutants and distinguish driver from passenger
mutations, but their predictive power remains limited and largely
depends on the background mutation rate, which is difficult to
determine for each sample [Torkamani et al., 2009].

The connection between cancer and kinase activation has been
found fairly recently [Martin, 2004; Wan et al., 2004]. Such increased
RTK activity may be caused by gene amplifications, enhanced tran-
scription or translation, and also by mutations. Discovery of cancer-
related mutations in several RTKs [Paez et al., 2004] and the analysis
of their effect on kinase structure and activity revealed that some
mutations may disturb autoinhibitory interactions and consider-
ably accelerate catalysis [Dixit et al., 2009b; Yun et al., 2007). More-
over, different mutations in RTKs were shown to result in different
binding selectivity to cancer drugs. Structural studies of kinases
in complexes with small molecule drugs indeed revealed different
structural perturbations in response to cancer mutations, which
might affect the equilibrium between active and inactive conforma-
tions [Engelman et al., 2007; Eswaran and Knapp, 2010; Greulich
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et al., 2005]. This reflects the importance of the analysis of struc-
ture and dynamics of kinases in understanding the mechanisms of
cancer mutations.

The interconversion between active and inactive states in kinases is
highly regulated and kinases differ in their mechanisms of activation
and inactivation, specifically those processes that lead to conversion
of inactive to active forms. Interestingly, it has been shown that de-
spite commonly conserved features, inactive conformations might
be more structurally diverse than active conformations and could
be targeted selectively by small molecule inhibitors, among them
cancer drugs [Jura et al., 2011; Schindler et al., 2000]. Activation
mechanisms of kinases represent a spectrum with two extremes,
with the CDK1 (MIM# 116940) and EGF (MIM# 131550) receptors
on one side that are activated by allosteric effectors, namely, by the
formation of an asymmetric dimer in cases of Epidermal Growth
Factor Receptor (EGFR) [Zhang et al., 2006] and by binding of cy-
clin in cases of CDK [De Bondt et al., 1993; Jeffrey et al., 1995].
At the other extreme, SRC (MIM# 190090) kinases are normally
inhibited by binding of SH2 and SH3 domains and activated spon-
taneously when this interaction is disrupted [Moarefi et al., 1997].
In general, ligand binding to the extracellular region controls dimer-
ization of kinase domains and subsequent cross-phosphorylation of
tyrosine in the activation loop. Phosphorylated tyrosine can form an
electrostatic contact with the basic residues and stabilize the active
state of kinase, enabling phosphorylation of other tyrosine residues
on the C-terminal tail, which in turn mediate binding of SH2 and
PTB domains of downstream signaling molecules [Hubbard and
Miller, 2007]. Moreover, it has been proposed that four hydropho-
bic residues forming the so-called “spine” contribute to the process
of activation by coordinating the movements of the N- and C-lobes
of the molecule [Kornev et al., 2006].

Although structural analyses showed significant differences in
conformations between the active and inactive forms of kinase do-
mains, only a few hotspot mutations have been analyzed by struc-
tural studies and dynamics simulations. The role of many rare as well
as frequent mutations in the activation of kinases remains unclear.
In this work, we examined the energetic effect of cancer mutations
on both active and inactive conformations of kinase domain in re-
lation to their oncogenic potential to quantify the coupling between
cancer mutations, kinase stability, and activity. Oncogenic poten-
tial was measured as a number of samples where a given mutation
was observed. Since cancer mutations can be observed not only
as singletons but also in doublets or triplets, we analyzed muta-
tion patterns for single and double mutations in the kinase domain
(the juxtamembrane, JM, region was also included if its structure
was available). In accord with other studies, we showed that can-
cer mutations had an activating effect on RTKs. Singleton cancer
mutations overall destabilized both active and inactive states; how-
ever, inactive states were destabilized more than the active ones
so that active states were more populated. Interestingly, more fre-
quently observed mutations had a higher activating effect for both
single and double mutations, which might allow one to predict the
activating effect of the mutations from their mutation spectra. Inde-
pendent evolutionary analysis of mutation spectra complemented
this observation and found the same frequency threshold defin-
ing the mutation hotspots. Moreover, for many double mutations,
we found a positive epistasis or nonadditive effect, which pointed
to the additional advantage of doublets for the tumor cell com-
pared with singletons. The evolutionary analysis also demonstrated
that nonsynonymous single and multiple mutations in RTKs oc-
curred more often than expected by chance and led to selective
advantages for tumor cells. In addition, the mutation spectrum of

multiple mutations was found to be different from the spectra of
singletons, which hints at different underlying mechanisms of their
origin.

Materials and Methods

Examining the Frequency Distribution of Cancer Mutations

We derived all mutations available for 58 different human RTKs
from the COSMIC database v49 Release [Forbes et al., 2008], which
stores somatic mutations of cancer cells extracted from the primary
literature. Amino acid sequences of the 58 RTKs and mutation
numbering were obtained from the COSMIC database (Supp. Ta-
ble S1). We divided the sequences into five regions: the extracellular
region, transmembrane domain, JM domain, kinase domain, and
C-terminal tail. First, we determined the boundaries of the trans-
membrane domain. Second, to determine the boundaries of the
kinase domain, we generated a multiple sequence alignment of 58
sequences using the MAFFT program [Katoh and Toh, 2008] and
mapped secondary structure elements onto the alignment using a
crystal structure of the kinase domain of EGFR. We defined the first
residue of the first β-strand of the N-lobe as the first site of the ki-
nase domain and the last residue of the last α-helix of the C-lobe as
the terminal site of the domain. Finally, the extracellular region was
defined between the N-terminal end and the transmembrane do-
main, the JM region—between the transmembrane domain and the
kinase domain and the C-terminal tail—between the end of the ki-
nase domain and the end of the protein. For each region, we counted
the number of unique mutations and mutation sites, and calculated
the number of unique mutation sites per residue in the protein. The
evolutionary tree of 58 RTKs was constructed based on the multiple
alignment of the kinase domain with the neighbor-joining method
[Saitou and Nei, 1987] using MEGA5.

Assessing the Effect of Mutations on RTKs in Active and
Inactive States

We obtained all crystal structures for RTKs available in the man-
ually curated KEGG pathway database [Kanehisa et al., 2004], and
manually compiled a list of structures of the kinase domain in active
and inactive states (altogether 18 structures). We then calculated
the change in unfolding free energy (��G) of single amino acid
substitutions on these structures. Perturbations in ��G caused by
mutations may result in changes of equilibrium constant and con-
centrations of RTKs in different conformations. ��G was calcu-
lated using two modules of FoldX version 3.0 [Guerois et al., 2002],
which is among the top available methods to estimate the effect of
mutations on protein stability; it reaches 0.64 sensitivity and 0.43
specificity [Khan and Vihinen, 2010] of prediction and reports a
correlation coefficient between experimental and computed ��G
values in the range of 0.5–0.8 [Guerois et al., 2002; Potapov et al.,
2009; Zhang et al., 2012].

First, we identified strained torsion angles and Van der Waals’
clashes in the original structure and optimized side chains to pro-
vide a repaired structure (RepairPDB module). Then, using the
BuildModel module, we optimized the configurations of the neigh-
boring side chains of the mutation site and calculated the difference
in stability (��G) between the repaired native structure and the
mutant structure.

For each mutation and corresponding amino acid substitution,
we calculated a ���G value, which represents the difference in
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effect of the mutation on the stability of the active and inactive
states:

���G = ��G (inactive) – ��G (active) (1)

��G = �G (wt) – �G (mut) (2)

where �G(wt) and �G(mut) were the free energy of unfolding
for wild type and structures with mutations, respectively. The un-
folded state of wild type and mutants were considered to be similar
as described in previous studies [Zhang et al., 2010, 2011]. The
���G value was calculated only when the mutation could be
mapped on both structures in the active and inactive states. We
also extracted combinations of two or more concurrent mutations
from our dataset, which we call thereafter “multiple” mutations.
The ��G values of the observed multiple mutations were calcu-
lated using the BuildModel module of FoldX. Negative and positive
��G values corresponded to stabilizing and destabilizing effects
of mutations, respectively. In addition, we sampled the background
��G distribution by selecting all possible single amino acid sub-
stitutions caused by single nucleotide substitutions for all sites in a
protein (for analysis of single mutations) and by randomly select-
ing 1,000 pairs of amino acid substitutions (for analysis of double
mutations).

We also defined the positive epistatic (superadditive) effect of
multiple mutations as follows:

SA = ���G (AB) – ���G (A) – ���G (B) (3)

Here, ���G(AB), ���G(A), and ���G(B) describe the ef-
fect of double and single mutations on activation, respectively. Pos-
itive SA values correspond to the positive epistasis, namely, when
the shift toward the active state upon introducing both mutations is
higher than the sum of the effects of the single mutations. All data
for single and double mutations produced in this study is available
at ftp://ftp.ncbi.nih.gov/pub/panch/RTK/.

Predicting Mutation Hotspots

Mutation hotspot prediction in this study was based on a thresh-
old (Sh) value for the number of mutations in a mutable site. The
threshold and resulting hotspot sites were calculated for each mu-
tation spectrum (mutation spectrum represents a distribution of a
number of position with a given mutation frequency) separately us-
ing classification analysis described previously [Glazko et al., 1998;
Rogozin et al., 2001]. For this purpose, the CLUSTERP program was
used (ftp://ftp.bionet.nsc.ru/pub/biology/dbms/CLUSTERM.ZIP),
which is based on the simulation, expectation, and maximization
subclass approach. The algorithm tries to classify the mutation sites
according to different mutation probabilities, and each site should
belong to only one class. The mutation spectrum of each class is ap-
proximated by the Poisson distribution and an overall mutational
spectrum is regarded as a mixture of Poisson distributions. Vari-
ations in mutation frequencies among sites of the same class are
assumed to be due to random reasons (since mutation probability
is the same for all sites in one class), but differences between mu-
tation frequencies among sites from different classes are statistically
significant. A class with the highest mutation frequency is called
a hotspot class. The process which separates the mutation spec-
trum into classes is iterative and each iteration includes simulation,
maximization, and estimation procedures.

Analyzing Doublet Mutations

To study the properties of multiple mutation spectra, we used
a sampling procedure repeated 1,000 times. Each generated set of
pseudo-multiple mutations had the size equal to the set of multi-
ple mutations and mutations were randomly taken from the set of
single mutations. The resulting set of generated pseudo-multiple
mutations was compared with the observed set of multiple mu-
tations. A Monte Carlo modification of the Pearson χ2 test of
spectra homogeneity [Adams and Skopek, 1987] was used to com-
pare distributions of multiple and pseudo-multiple mutations along
the protein sequences. Calculations were done using the program
COLLAPSE [Khromov-Borisov et al., 1999]. We used the above
sampling procedure to estimate the expected number of doublets
and the significance of their overrepresentation and underrepre-
sentation. The number of doublets averaged over 1,000 trials was
used as an expected value. Statistical significance of overrepresented
doublets was estimated using P value, which referred to the prob-
ability to find the observed or larger number of a given doublet
purely by chance (P[S ≥ O]). If P value was less than 0.05, this
pair was considered overrepresented. The same logic was used for
the analysis of underrepresented doublets where the P value P(O
≥ S) was calculated. This procedure was applied to pairs of muta-
tions with non-zero expected values only. This severely limits the
number of analyzed pairs, however increases the reliability of the
analysis.

We also employed an analogy to the Hardy–Weinberg model
[Crow, 1999; Hardy, 1908]. The Hardy–Weinberg principle is fre-
quently used for allele and genotype frequencies: zygotic genotype
frequencies are predictable from gamete frequencies, assuming ran-
dom mating. In the case of double mutations, we assume that fre-
quencies of nonsynonymous and synonymous substitutions are al-
lele frequencies and those substitutions are randomly combined
in doublets. We found that the observed number of “doublet het-
erozygosity” (doublets that contain one nonsynonymous and one
synonymous substitution) is significantly lower than expected under
Hardy–Weinberg equilibrium (Supp. Table S2).

We used BioRuby [Goto et al., 2010] and the Entrez Programming
Utilities [Sayers et al., 2011] to facilitate data manipulation and
analyses throughout this study and Cytoscape [Shannon et al., 2003]
for the network visualization.

Results

The Kinase and JM Domains have the Largest Density of
Cancer Mutations

We obtained 9,607 nonsynonymous mutations observed in differ-
ent cancer samples from the COSMIC database [Forbes et al., 2008],
including 1,060 unique mutations from 841 unique mutation sites.
Out of these 9,607 mutations, zygosity information was available for
1,534 mutations and 93% of them were heterozygous, namely con-
tained the mutation in only one allele of the locus. The mutations
were distributed over a wide range of human RTKs (Supp. Fig. S1),
and EGFR and KIT (MIM# 164920), well known cancer causative
genes, had more than 100 unique mutation sites. The majority of
mutations and mutation sites (73%) were observed only in one can-
cer sample (patient), whereas about 5% of them were observed in
10 or more samples (Supp. Fig. S2). The most frequently observed
mutation in the dataset was the p.Leu858Arg mutation of EGFR
(observed in 2,299 samples). These repeated mutations are more
likely to be driver mutations in contrast to the mutations observed
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Figure 1. Effect of single mutations on stability of the kinase domain. A: The distribution of ���G for unique mutations of class A is shown
in red/thin line (187 mutations), class B in blue/stippled line (110 mutations), class C in green/bold line (21 mutations), and all possible random
mutations caused by single nucleotide substitutions are shown in black dashed line. B: The distribution of ��G of active states. C: The distribution
of ��G of inactive states. The probability density functions were smoothed using the Gaussian kernel.

only in one sample, the large fraction of which might correspond to
passenger mutations.

All mutations were classified depending on their oncogenic po-
tential (which was estimated here as a frequency of samples where
they were observed) into class “A”—for those observed in one sam-
ple, class “B”—for those observed in two to nine samples, and class
“C”—for 10 or more samples. This classification is consistent with
our evolutionary analysis described below. We observed that the
kinase domain and JM region had the largest density of mutations
out of all RTK regions, next came the extracellular domain, whereas
mutations in the membrane domain and the C-terminal tail were
relatively rare (Supp. Fig. S3). This result is consistent with the pre-
vious studies [Dixit et al., 2009b; Izarzugaza et al., 2009] although
mutations were classified differently in the present study. Moreover,
from Supp. Fig S3, one can see that the oncogenic potential varies
greatly depending on the region of RTKs. For example, the percent-
age of mutation sites increased from 42% for class A to 57–59% for
class B/C sites for the kinase domain and almost doubles (from 9%
to 15–20%) in the case of the JM domain. In contrast, the number
of mutation sites decreased with the oncogenic potential for the
extracellular domain, which points to many rare mutations in this
region.

The Effect of Single Mutations on Stability and Activity of
Kinase Domain

Since the majority of mutations in class B and C are located
in the kinase domain and their frequencies per residue are also
high, we measured the effect of the mutations on the stability and
activity of the kinase domain (in some cases, the JM region was
also included). We collected six pairs of structures of the same
RTK kinase in the active and inactive states and structures from
six additional RTK kinases available either in the active or inactive
conformations (altogether seven crystal structures in the active state
and 11 structures in the inactive state, Supp. Table S1). In total,
344 unique mutations were mapped onto active structures and 419
mutations were mapped onto inactive structures, of which 318 were
mapped onto both of them.

Figure 1A shows the distribution of ���G values, which rep-
resents the difference in the unfolding free energies between the

active and inactive states upon introducing the amino acid sub-
stitution corresponding to a cancer mutation (see Materials and
Methods). Positive ���G values correspond to the tendency for
the activation by mutations when the equilibrium between active
and inactive states is shifted toward active states. As can be seen
from Figures 1A and 2, the mean values of these distributions in-
crease from –0.01 kcal/mol for class A, to +0.15 kcal/mol for class
B, and +1.06 kcal/mol for class C cancer mutations. The distribu-
tion of class C is significantly shifted to the positive side (P = 0.001,
one-sided Wilcoxon rank-sum test), compared with the background
distribution (see Materials and Methods). Cancer mutations from
the A and B classes do not show a significant effect on the stability of
active or inactive states compared with random mutations (P = 0.71
and 0.25, respectively). This indicates that the frequently observed
mutations have a different effect (the mean value of ���G would
be close to zero if the energetic effects of mutations on the active and
inactive conformations were comparable) on the active and inactive
states, leading to the shift of equilibrium from inactive to active
states.

We analyzed separately the energetic effect of cancer mutations
on the active and inactive conformations. Figure 1B and C shows
distributions of ��G values for the active and inactive states, re-
spectively. All three distributions for active states are shifted to the
positive values, indicating that cancer mutations destabilize active
structures, however destabilize them significantly less than the ran-
dom mutations (P = 0.033 for A, 0.0006 for B, and 0.017 for C classes,
respectively). As to the inactive structures, unlike cancer mutations
from the A and B classes, only mutations from class C destabilize
inactive structures significantly compared with random mutations
(P = 0.025) (Fig. 1C). In short, mutations with high oncogenic
potential have a tendency to destabilize inactive states to a greater
degree than active states, which may cause aberrant activations of
RTKs in cancer cells (Fig. 2). This effect is more pronounced for the
KIT family of RTKs.

Assuming that homozygosity or heterozygosity of RTK mutations
should not affect the activity since mutant oncogene alleles are typi-
cally dominant, we indeed did not find any difference in ���G dis-
tributions between heterozygous and homozygous mutations even
though the most frequent mutations such as p.Leu858Arg in EGFR
and p.Asp816Val or p.Leu576Pro in KIT were sometimes observed
as homozygous.
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Figure 2. The relationship between oncogenic and activation poten-
tials. Mean values and standard errors of ���G plotted for each class
of unique mutations.

Analysis of Single Mutation Spectra

In this work, we analyzed two mutation spectra of the EGFR and
KIT genes. The numbers of single mutations in EGFR and KIT were
2,680 and 2,034, respectively. Analysis of the mutation spectrum of
the EGFR gene using CLUSTERP revealed four classes of sites (see
Materials and Methods). The first class includes obvious “cold” sites
with mutation frequencies (number of samples the same mutation
was observed) less than or equal to 4, the second class includes sites
with the mutation frequency less than 10, the third class from 10 to
26, and the fourth class comprises obvious hotspot sites (mutation
frequency > 49). The distribution of observed and expected muta-
tion frequencies is shown in Supp. Figure S4A. The second class does
not contain hotspot sites since numerous sites with no mutations
or just one mutation were also included in this class, while several
obvious hotspots were present in the third class of sites. Thus, 10
mutations were chosen as the threshold value (Sh) for determining
the mutation hotspot sites. Similar results were obtained for the KIT
gene with 2,034 mutations (Supp. Fig. S4B); analysis of four pre-
dicted classes of sites suggested the same threshold of 10 mutations,
which is consistent with our class C derived in the previous section
based on the analysis of oncogenic and activation potentials.

The great majority of EGFR and KIT mutations (>95%) occurred
in nonsynonymous codon sites and, accordingly, resulted in amino
acid replacements in EGFR and KIT genes. The excess of nonsyn-
onymous over synonymous substitutions was statistically significant
(P < 10–70 by the Fisher exact test) when compared with the random
expectation under the neutral evolution model. Namely, using the

modified Nei–Gojobori method, we estimated that approximately
73% of the substitutions were expected to occur in nonsynony-
mous sites in the neutral regime. Preponderance of amino acid
replacement over silent substitutions is the signature of positive
(directional) selection [Hurst, 2002]. The large excess of nonsyn-
onymous substitutions seen in EGFR and KIT is similar to TP53
(MIM# 191170) and some other cancer-related genes [Glazko et al.,
2006] and is an unequivocal indication that, in tumors, the EGFR
and KIT genes evolve under positive selection and preferentially ac-
cumulate mutations that lead to selective advantages for the tumor
cells.

The Effect of Multiple Mutations on Stability and Activity of
Kinase Domain

We found 210 unique multiple mutations from 17 different RTKs,
and about 73% of them were from the EGFR or KIT families (Supp.
Fig. S5). The most frequent multiple mutation was the combina-
tion of p.Thr790Met and p.Leu858Arg in the EGFR protein, which
was observed in 48 samples. We mapped 97 multiple mutations
that consisted of 92 double mutations and five triple mutations on
structures in active and inactive states (so-called “doublets”). Fig-
ure 3A shows distributions of ���G values for multiple mutations
and a background distribution of a randomly chosen 1,000 pairs
of mutations. The distribution corresponding to cancer mutations
is significantly shifted to positive values compared with random
doublet mutations (P � 0.01, one-sided Wilcoxon rank-sum test)
pointing to a tendency for activation for doublets. Interestingly, the
distribution of ��G for active kinase states is significantly shifted to
negative values (P � 0.01), compared with the background distri-
bution, implying the stabilization of the active state by double cancer
mutations compared with random mutations (Fig. 3B), while the in-
active state does not seem to be significantly destabilized by doublets
(P = 0.33) (Fig. 3C).

Moreover, we found a positive epistasis for double mutations
(Fig. 4). Indeed, the effect of multiple mutations on shifting the
population of kinase conformations toward active ones is higher
than a total of individual mutations (P � 0.01, one-sided Wilcoxon
rank-sum test), suggesting that, overall, double mutations have a
synergistic effect. This trend is especially pronounced for double
mutations observed in more than one sample (Fischer exact test
P = 0.02). In addition, we do not observe any correlation between
���G values and the spatial distances between two mutations in
the structures (Supp. Fig. S6), indicating that synergistic multiple
mutations are not necessarily close to each other in space providing
for their direct interactions.

To understand the mechanism of multiple mutations, we focused
on doublets found specifically in EGFR and KIT. We constructed
a mutation network, where nodes represented mutation sites and
edges corresponded to double mutations. The network shows that
L858 of EGFR is clearly the biggest hub, which connects to more
than 20 nodes/mutation sites in doublets (Fig. 5), although this
hub is even smaller than expected based on the single mutation
frequencies (see Analysis of Doublet Mutation Spectra). EGFR also
has some hotspots that connect to more than five nodes, such as
G719, S768, and L861, and all of them are in the kinase domain. On
the contrary, KIT has many more concurrent mutations between
residues in the kinase domain and the JM domain, showing many
cliques and connections between multiple sites. This might reflect
the difference between their regulation mechanisms. At the same
time, there are seven sites aligned in both KIT and EGFR that are
involved in double mutations (shown in magenta in Fig. 5).
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Figure 3. Effect of multiple mutations on stability of the kinase domain. A: The distribution of ���G for observed multiple mutations in red/solid
line and random mutations in black dashed line. B: The distribution of ��G of active states. C: The distribution of ��G of inactive states. The
probability density functions were smoothed using the Gaussian kernel.

Figure 4. Positive epistasis of double mutations. Distribution of SA
(difference between ���G [multiple mutations]) and ���G (sum of
corresponding mutations).

Analysis of Doublet Mutation Spectra

The numbers of doublet mutations in EGFR and KIT were 207
and 76 pairs, respectively. Similar to the single mutations, the great
majority of multiple mutations (>88%) occurred in nonsynony-
mous codon sites implying that doublets are under positive selec-
tion. To compare the properties of multiple mutation spectra to
single mutations, we used a sampling procedure (see Materials and
Methods). The observed and simulated spectra of double mutations
(generated from the spectra of single mutations) were significantly
different (P � 0.01 for EGFR and KIT), which points to the dif-
ferent mechanisms underlying single and double mutation spectra.
The major difference between observed and simulated mutation
spectra for the EGFR gene came from the significantly smaller num-
ber of multiple mutations in the major hotspot position 858 (270
observed mutations versus 373 expected mutations, P � 0.01 by the
Fisher exact test). Several positions with elevated frequency of mul-
tiple mutations, for example, the positions 709 (15 mutations), 719
(42 mutations), and 768 (22 mutations) in the EGFR gene were also

observed. We listed doublets with a significant overrepresentation
and underrepresentation in Table 1.

We also compared the frequency of double mutations in EGFR
and KIT to the TP53 gene [Meng et al., 1999] and found that the
frequency of nonsynonymous doublets was significantly higher in
the EGFR and KIT genes compared with TP53 (Supp. Table S2).
This result strongly suggests that multiple mutations in EGFR and
KIT are driven by positive selection. Multiple mutations in TP53
are likely to be the result of transient mutagenesis [Drake et al.,
2005] and are unlikely to be under positive selection [Rodin and
Rodin, 1998] and thus can be used as a null model [Drake et al.,
2005; Rodin and Rodin, 1998]. Additional analysis using the Hardy–
Weinberg principle (see Materials and Methods) also suggests that
strong positive selection is an important driving force for RTK dou-
blets. Under this model, we compared the observed level of “doublet
heterozygosity” (doublets that contain one nonsynonymous and
one synonymous substitution) to what we expect under Hardy–
Weinberg equilibrium. The observed “doublet heterozygosity”
(2pq = 51) is significantly lower than expected (2pq = 82) (Supp.
Table S2); this discrepancy is usually attributed to preferential fixa-
tion of double nonsynonymous mutations due to positive selection
for EGFR and KIT.

Interestingly, quite a few RTK mutations and mutation sites in
our set are found only as a part of doublet mutations, namely,
49% of mutations and 30% of mutation sites are observed only
in doublets but not in singletons. For example, the p.Glu709Gly
mutations in EGFR, observed in seven different patients, always
appear with another mutation rather than as a single mutation.
These mutations are likely to be secondary mutations.

Discussion
It has been previously shown that cancer mutations may activate

RTKs, sometimes in a ligand-independent way, and the mechanisms
of kinase activation in cancer might be linked to transitions between
the active and inactive states [Yun et al., 2007; Zhang et al., 2006].
The crystal structures of the EGFR p.Leu858Arg mutant showed,
for example, that this mutation prevents the activation loop from
adopting the inactive conformation [Yun et al., 2007]. It was sug-
gested that the effect of the secondary EGFR p.Thr790Met mutation
facilitates interconversion between the inactive and active conforma-
tions and enhances the stability of the active conformation relative
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Figure 5. The mutation network of EGFR and KIT for different RTK regions. Each node represents one mutation site where at least one mutation
can occur. The mutation sites of KIT are shown in blue/gray, EGFR in green/black, and aligned sites are shown in maroon/white. Residue numbers
are given inside the nodes. The edge connects two sites that are concurrently mutated. Those edges with positive epistasis are shown in bold.

Table 1. Significantly Overrepresented and Underrepresented Double Mutations in EGFR and KIT

Protein Mutation 1 Mutation 2 Observed Expected P value

Overrepresented pairs
EGFR p.Leu833Val p.Leu858Arg 11 0.38 0.001
EGFR p.Gly719Cys p.Ser768Ile 6 0.17 0.005
EGFR p.Glu709Gly p.Leu858Arg 6 0.90 0.009
EGFR p.Thr790Met p.Leu858Arg 47 28.74 0.022
KIT p.Leu576Pro p.Val654Ala 4 0.18 0.031

Underrepresented pairs
EGFR p.Gly719Ser p.Leu858Arg 3 21.75 0.004
EGFR p.Leu858Arg p.Leu861Val 1 16.1 0.002
KIT p.Val560Asp p.Asp816Val 1 6.6 0.024

All mutation numbering was obtained from the COSMIC database. All mutations were mapped to a single version of each gene sequence, and are available in the Download
section of the COSMIC database.

to the inactive one [Yun et al., 2008]. More recently, the modeling
of autoinhibited conformations and the effect of several frequent
hotspot mutations revealed enhanced mobility near mutation sites,
which disrupted the local stabilizing interactions and in some cases
allosterically altered the distribution of locally frustrated sites and
destabilized the inactive form [Dixit et al., 2009a, 2009b; Dixit and
Verkhivker, 2011]. It was shown that EGFR p.Thr790Met and EGFR
p.Leu858Arg mutations also lead to the enhanced stability of the
active state [Dixit and Verkhivker, 2009].

In this study, we analyzed both the active and inactive states of
the kinase domain from structures of different RTKs and estimated
the effect of single and multiple cancer mutations on their sta-

bility. In accordance with the previous studies, using much larger
dataset of mutations, we showed that, overall, single cancer muta-
tions destabilized inactive states. We also showed that single cancer
mutations destabilized active states of RTK, but to a lesser degree
than the random mutations; moreover, to a lesser degree than the
single cancer mutations destabilized inactive states. This led to ki-
nase activation. The exception was the EGFR p.Thr790Met mu-
tation, which did not have a considerable overall effect (���G =

–0.5 kcal/mol) alone and exhibited an activating effect as shown later
as a double mutation together with EGFR p.Leu858Arg (see next sec-
tion). Although destabilizing effect on both active and inactive states
might potentially lead to misfolding and aggregation, the changes
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in ��G of about 1–3 kcal/mol might not compromise an overall
fitness of a protein [Tokuriki and Tawfik, 2009]. The homozygosity
state of the mutation did not affect the obtained results, consis-
tent with the premises that mutant oncogene alleles were typically
dominant.

Moreover, we tried to answer the question if one can predict the
activating effect of single or multiple mutations from their muta-
tion spectra. Importantly, we showed that there exists a relationship
between the statistics-based estimate of oncogenic potential of mu-
tation and its activation effect calculated based on thermodynam-
ics principles. Namely, more frequent mutations have a somewhat
higher activating effect. This effect is not linear, although, and for
frequent mutations from more than 10 samples, the activity in-
creases radically upon introducing mutations. From the Boltzmann
distribution, one can estimate the fraction of proteins with a given
stability or stability effect of mutations (��G), which would follow
a simple logistic function behavior. Indeed, previously, the sigmoidal
relationship was revealed between the destabilizing effects of muta-
tions, leading to monogenic diseases and the severity of the diseases
[Yue et al., 2005]. In addition, recently an association was shown
between the frequency of mutations and their potential functional
impact calculated based on their evolutionary conservation [Reva
et al., 2011]. Our analysis of thermodynamic properties is nicely
complemented by the evolutionary analysis, which uncovered four
populations of mutations with different underlying mutation rates
and we showed that mutation hotspots (potential driver mutations)
can be reliably defined from the samples with frequencies higher
than 10. It should be mentioned that although we analyzed local
changes produced by cancer mutations in several RTK families dif-
fering by regulatory mechanisms, we observed the common activat-
ing effect of cancer mutations in relation to its oncogenic potential.
Thus, our analysis complements previous observations. It implies
that although increased RTK activity may be caused by gene am-
plifications, enhanced transcription, or translation, both single and
double point mutations might play a key role in kinase activation in
cancer.

Moreover, a significant fraction of cancer-associated mutations
comes in doublets or triplets. The origin of multiple mutations is
still not very well understood, they can originate either through
defects in DNA replication/repair systems or arise locally through
transient mechanisms [Chen et al., 2009, 2012; Matsuda et al., 2001;
Pavlov et al., 2006; Seidman et al., 1987; Stone et al., 2009]. We found
that 7.7% and 3.7% of all single cancer mutations of EGFR and KIT,
respectively, represent double cancer mutations, compared with the
previously reported 6% of double mutations in EGFR in lung can-
cers [Chen et al., 2008]. These numbers are substantially larger than
the fraction of multiple somatic mutations in the lacI transgene in
mouse somatic tissues (∼1%) [Hill et al., 2004]. Furthermore, the
fraction of multiple mutations in neighboring positions (tandem
mutations) of the lacI gene was found to be higher compared with
multiple mutations separated by one or more nucleotides [Hill et al.,
2004], whereas the opposite tendency was found in the EGFR gene
where tandem mutations were rare (results not shown). In general,
an excess of tandem mutations is a signature of various error-prone
DNA polymerases and is expected to have a distinct DNA context
specificity [Matsuda et al., 2001; Pavlov et al., 2006; Stone et al.,
2009]. This is consistent with the distinct context properties of
tandem lacI mutations in mouse somatic tissues and a lack of sig-
nificant differences for spectra of single and nontandem multiple
lacI mutations [Buettner et al., 2000; Hill et al., 2004]. However, the
mutation spectrum of multiple mutations in our study was found
to be different from the spectrum of singletons, which hints at dif-
ferent underlying mechanisms of their origin and suggests a role

of clonal selection for multiple substitutions [Bazykin et al., 2004].
Although we did not find any evidence for prevalence of double
substitutions to contact each other in three-dimensional protein
structures of kinase monomers, such contacts may occur between
different subunits of homodimers since dimerization is crucial for
RTK functions in a cell. Further analysis is needed to study the effect
of mutations on stability and function of protein complexes since
many disease-related mutations may disrupt protein interactions
[Schuster-Bockler and Bateman, 2008; Teng et al., 2009].

Similar to single mutations, double mutations were shown to ac-
tivate the kinase domain. Moreover, for many doublets, a positive
epistasis has been found, which points to the additional advantage
of doublets for the tumor cell compared with singletons. Some dou-
blets have a drug resistance effect, one of the classical examples is
the p.Thr790Met+p.Leu858Arg double mutant of EGFR showing
strong resistance to gefitinib [Tam et al., 2009]. According to our
study, this double mutation is predicted to have a potential acti-
vating effect (���G = +1.9 kcal/mol) and quite high oncogenic
potential (observed in 47 samples). Moreover, it exhibits a positive
epistasis effect (SA = +1.14 kcal/mol). Some other mutations with
high oncogenic potential and positive epistasis include p.Leu833Val
+ p.Leu858Arg (���G = +3.85 kcal/mol; SA = +1.4 kcal/mol) and
p.Leu858Arg + p.Glu884Lys (���G = +4.57 kcal/mol and SA =

+1.07 kcal/mol) of EGFR. The latter E884K mutation disrupts an
ion pair between K884 and R958 and may change the downstream
signaling significantly although its connection to the p.Leu858Arg
mutation remains unclear [Tang et al., 2009]. In addition, we ob-
served many doublets, which were not found as single mutations
(about half of all doublets). One might hypothesize that such mu-
tations are secondary mutations causing the previously mentioned
differences between the single and double mutation spectra.

Analyses of mutation spectra and activating effects of different
cancer mutations have important prognostic implications. Namely,
it has been shown that some RTK activating mutants have been
associated with a better survival prognosis and better response to
RTK inhibitors [Jackman et al., 2009]. Indeed, cancer cells exhibit-
ing mutant kinases become critically dependent on certain path-
ways (so-called “oncogene addiction” [Weinstein, 2002]). For ex-
ample, mutant EGFRs selectively activates Akt and signal transduc-
tion/activator of transcription signaling pathways, which in turn
promote cell survival. It explains the effectiveness of gefitinib, in-
hibiting critical antiapoptotic pathways in lung cancers with mutant
EGFR genotypes [Sordella et al., 2004]. In our study, we attempted to
link the stability of RTKs with their oncogenic potential and differ-
ential activity, which combined with other data on phosphorylation
patterns for each mutant may provide insight into the mechanisms
of activation of different pathways by cancer mutations and may
help to design effective cancer drugs.
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